

<u>Part 1: Hiring Workers-</u> Use the chart for a firm in a perfectly competitive labor market to answer the questions.

1. Assume that the market price of the product is \$3 and the wage is \$15. How many workers should be hired to maximize profit?

4 workers. Hire where the MRP = MRC.

2. Assume that the fixed costs are \$40. Calculate the profit or loss. \$59 = TR (53 x \$3) - TC (\$40 + \$60) = \$159 - \$100

3. Assume that the price of the product increased to \$5. How many workers should be hired to maximize profit?

5 workers. Hire where the MRP = MRC

4. Assume the fixed costs stays \$40. Calculate the profit or loss. \$170 = TR (57x \$5) - TC (\$40 + \$75) = \$285 - \$115

5. Assume that the government established a minimum wage of \$25, how many workers would the firm hire to maximize profit?

4 workers. Hire where the MRP = MRC

6. If the fixed costs are \$40. Calculate the profit or loss with the \$25 minimum wage and \$5 price. $125 = TR (53 \times 5) - TC (40 + 100) = 265 - 140$

Part 2 - Graph Practice- The graph shows the MRP for a different firm hiring workers in a perfectly competitive labor market.

7. Assume that the wage is \$20. Draw a marginal resource cost (MRC) curve and identify how many workers should be hired to maximize profit? 8 workers. Hire where the MRP = MRC

8. Assume that the fixed cost is \$50. What is the total cost of hiring the profit maximizing quantity?

\$210 = FC (\$50) + VC (Wage times quantity)

9. Assume the firm produces in a perfectly competitive product market and the price of the product is \$2. How much additional output did the last worker produce? 10 units. The MRP of the last worker is \$20 and the price is \$2 so the MP is 10.
10. Assume instead that the wage is \$30. How many

workers should be hired to maximize profit? 6 workers. Hire where the MRP = MRC

11. Assume that the fixed cost stays \$50. What is the total cost of hiring the profit maximizing quantity? \$230 = FC (\$50) + VC (Wage times quantity)

Wage											,
\$50	_	_									
\$45		\rightarrow	\leftarrow								
\$40	+			$\left \right $							
\$35	+	+	+								
\$30	+	+	-								
\$25	+	-									
\$20									IVI	RU	
\$15	+	+							\land		
\$10	+								MR	Ρ	
\$5	+										
	1	2	3	4	5 (6	7 8	3	9 N	/orke	er

		-		
Quantity Workers	Total Product	Marginal Product		
0	0	-		
1	15	15		
2	35	20		
3	45	10		
4	53	8		
5	57	4		
6	58	1		
7	56	-2		

Part 3 - Least-Cost Rule- The tables below show the total amount of deliveries that can be made in a day using delivery drivers and drones. Assume that delivery drivers cost \$50 and drones cost \$150. Fill out the chart and answer the questions.

Quantity of Drivers	Total Deliveries	Marginal Product		
0	0	-		
1	100	100		
2	150	50		
3	175	25		
4	180	5		

Quantity of Drones	Total Deliveries	Marginal Product
0	0	-
1	150	150
2	225	75
3	270	45
4	285	15

- 12. With a constraint of \$450, what combination of drivers and drones would minimize costs while maximizing the total number of deliveries? Explain. 3 drivers and 2 drones. I used the cost minimizing rule MP(drivers)/P(drivers) = MP(drones)/P(drones). I calculated the marginal product per dollar for both drivers and drones and hired the ones that gave the most MP/\$.
- 13. How many total deliveries can be made each day with this combination? Show your work. 400 deliveries = 175 from drivers + 225 from drones.

Part 4 - FRQ Practice- Complete the following question from the 2008B AP exam (Question 3).

3. GW Company produces and sells hats in a perfectly competitive market at a price of \$2 per hat. Assume that labor is the only variable input and the wage rate is \$15 per unit of labor per day. The table below shows GW's short-run production function for hats.

Number of workers per day	0	1	2	3	4	5	6
Output of hats per day	0	10	26	36	44	49	52

- (a) After which worker do diminishing marginal returns begin?
- (b) Calculate the marginal physical product of the fifth worker.
- (c) Calculate the marginal revenue product of the third worker.
- (d) How many workers will GW hire to maximize profit?
- (e) If GW Company has fixed costs equal to \$20, what will be the company's short-run economic profits from hiring two workers?
- (f) If the price of hats increases, what will happen to the number of workers hired in the short run? Explain.

7 points (1 + 1 + 1 + 1 + 1 + 2)

- (a) 1 point:
 - One point is earned for stating the second worker.
- (b) 1 point:
 - One point is earned for stating the MP of the fifth worker is five units.
- (c) 1 point:
 - One point is earned for calculating the MRP of the third worker: \$20.
- (d) 1 point:
 - One point is earned for stating the GW will hire four workers.
- (e) 1 point:
 - One point is earned for calculating the profit: \$2.
- (f) 2 points:
 - One point is earned for stating that more workers will be hired.
 - One point is earned for the explanation that the increase in the price of hats raises the marginal revenue product, hence the demand for labor.